Nanopores with Fluid Walls

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling protein translocation through nanopores with bio-inspired fluid walls

Synthetic nanopores have been used to study individual biomolecules in high throughput, but their performance as sensors does not match that of biological ion channels. Challenges include control of nanopore diameters and surface chemistry, modification of the translocation times of single-molecule analytes through nanopores, and prevention of non-specific interactions with pore walls. Here, in...

متن کامل

Controlling the translocation of proteins through nanopores with bioinspired fluid walls

Synthetic nanopores have been used to study individual biomolecules in high throughput, but their performance as sensors does not match that of biological ion channels. Challenges include control of nanopore diameters and surface chemistry, modification of the translocation times of single-molecule analytes through nanopores, and prevention of non-specific interactions with pore walls. Here, in...

متن کامل

Temperature dependence of fluid transport in nanopores.

Understanding the temperature-dependent nanofluidic transport behavior is critical for developing thermomechanical nanodevices. By using non-equilibrium molecular dynamics simulations, the thermally responsive transport resistance of liquids in model carbon nanotubes is explored as a function of the nanopore size, the transport rate, and the liquid properties. Both the effective shear stress an...

متن کامل

Thermally responsive fluid behaviors in hydrophobic nanopores.

A fundamental understanding of the thermal effects on nanofluid behaviors is critical for developing and designing innovative thermally responsive nanodevices. Using molecular dynamics (MD) simulation and experiment, we investigate the temperature-dependent intrusion/adsorption of water molecules into hydrophobic nanopores (carbon nanotubes and nanoporous carbon) and the underlying mechanisms. ...

متن کامل

Theory of DNA translocation through narrow ion channels and nanopores with charged walls.

Translocation of a single-stranded DNA molecule through genetically engineered alpha -hemolysin channels with positively charged walls is studied. It is predicted that transport properties of such channels are dramatically different from neutral wild-type alpha -hemolysin channels. We assume that the wall charges compensate a fraction x of the bare charge q_{b} of the DNA piece residing in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 2011

ISSN: 0006-3495

DOI: 10.1016/j.bpj.2010.12.1146